Predicting Zero Coefficients in Formal Power Series Computations

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Predicting Zero Coefficients in Formal Power Series Computations

We consider the problem of predicting long sequences of zero coefficients in a power series obtained by multiplication, division or reversion (where all coefficients are integers). We describe efficient randomized algorithms whose probability of error can be controlled by Publisher: Please supply received and accepted dates. the user. A runtime analysis is given and some experimental results ar...

متن کامل

Transcendence of Formal Power Series with Rational Coefficients

We give algebraic proofs of transcendence over Q(X) of formal power series with rational coeecients, by using inter alia reduction modulo prime numbers, and the Christol theorem. Applications to generating series of languages and combinatorial objects are given.

متن کامل

Effective power series computations ∗

Let K be an effective field of characteristic zero. An effective tribe is a subset of K[[z1, z2, ...]] =K ∪K[[z1]] ∪K[[z1, z2]] ∪ ··· which is effectively stable under the Kalgebra operations, restricted division, composition, the implicit function theorem, as well as restricted monomial transformations with arbitrary rational exponents. Given an effective tribe with an effective zero test, we ...

متن کامل

ALGEBRAIC INDEPENENCE OF CERTAIN FORMAL POWER SERIES (II)

We shall extend the results of [5] and prove that if f = Z o a x ? Z [[X]] is algebraic over Q (x), where a = 1, ƒ 1 and if ? , ? ,..., ? are p-adic integers, then 1 ? , ? ,..., ? are linkarly independent over Q if and only if (1+x) ,(1+x) ,…,(1+x) are algebraically independent over Q (x) if and only if f , f ,.., f are algebraically independent over Q (x)

متن کامل

HYPERTRANSCENDENTAL FORMAL POWER SERIES OVER FIELDS OF POSITIVE CHARACTERISTIC

Let $K$ be a field of characteristic$p>0$, $K[[x]]$, the ring of formal power series over $ K$,$K((x))$, the quotient field of $ K[[x]]$, and $ K(x)$ the fieldof rational functions over $K$. We shall give somecharacterizations of an algebraic function $fin K((x))$ over $K$.Let $L$ be a field of characteristic zero. The power series $finL[[x]]$ is called differentially algebraic, if it satisfies...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Symbolic Computation

سال: 2002

ISSN: 0747-7171

DOI: 10.1006/jsco.2000.0495